孙星义的想法,林北并不知道。
毕竟林北又没得他心通的神通,甚至从头到尾他都没回过头。
而是从一开始,他便全身心的投入在了试卷当中,然后飞速答题。
没错,就是飞速。
对别人来说,那是做题如龟速,即便是第一道选择题,都压力山大。
包括周布衣这种学神在内,都花了打底四五分钟,才搞定第一道题,至于第二三道题,那耗费的就更久了。
可对林北来说,不说秒答,但也慢不了多少,基本都控制在一分钟内的那种。
当然,这做一道选择题,便要耗费将近一分钟,与林北过去心算秒答的速度相比,那绝对是慢了很大一截。
不过,林北却嗨皮的一批。
“这份卷子,倒有点儿意思。”
“虽然同样难度不大,可至少比上午的语文卷,要有趣的多得多。”
“应该,可以让我解解馋了。”
这是林北在拿到卷子,并快速扫完题后,给予该卷子的最真切评价。
不得不说,这数学帝葛大爷亲自操刀所出的试卷,质量就是不一样。
虽然难度不算大,却比林北日常所做的题,要复杂且新颖许多。
也许这种复杂和新颖,对别人来说,那是头疼欲裂,伤心想死。
即便是周布衣看见,都战战兢兢,控制不住手脚颤抖,乃至破防。
甚至连孙星义这种资深的数学老师,都评价说这份卷子难度过高。
可对林北来说,却是极好啊!
真的是极好。
他见到该卷子的第一眼,便心中欢喜不已,而控制不住内心冲动。
毕竟,他不怕题难,不怕题新,就怕题太简单,太守旧枯燥而无味。
比如上午的语文考试,就因为题太简单,而让他一阵大失所望。
不过下午的数学考,还是很有意思的,题型挺新颖复杂,让人一见钟情。
毫无疑问,这绝对是他见过最有意思的一份试卷,足可让他解馋的那种。
所以……
听闻考试正式开始,他便不理会外界一切,而全身心开始答题了。
第一题,选c。
这点,相信大家都没疑问吧!
毕竟这题虽然有些创新,看上去还蛮复杂,但实际上难度只是一般。
最正规的做法,便是用放缩法比较a,b和c的大小,运算量虽大点,可只要对各种放缩公式足够熟悉,便问题不大。
而走点儿捷径的话,那就是泰勒公式,不过该公式高中不学,所以林北也不知道,自然不会使用这个公式。
但他也没有用放缩法,直接在心里画出三个图形,在很接近1时看看三者间的切线斜率,然后估测比较就行了。
当然,这方法有投机取巧的成分,且答案也不一定准确。
毕竟连个过程都没得。
放在填空解答,肯定是凉凉无疑。
可这是选择题,并不要求具体过程,而只需要答案对了就行不是么?
做选择题,该取巧的时候是可以取巧的,可以猜,可以估测,可以画图,甚至可用排除法,讲究一个小题小做巧做,注重思想方法,达到既快又准,而不是反过来,搞出小题大做,纠缠半天才得出答案。
即便最后答案对了,可时间耗费过多,精力消耗过大,肯定得不偿失。
至于第二题,答案是a。
林北耗费时间长了点,接近一分钟。
毕竟这一题,确实没得取巧的办法,只能在心里通过运算。
不过这运算,并不复杂。
无非是……
【因为令 x =0,得 y =-2,令 y =0,得x =-2,所以a (-2,0), b (0,-2), iab| =(√4+4)反=2√2反。】
【又因点p在圆(x-2)^2+y^2=2,所以设 p (2+√2反cosθ,√2反sinθ),所以点p到直线x+ y +2=0的距离d =……】
【所以△ abp 面积的取值范围是:[12x2√2x√2,12x2√2x3√2]=[2,6]。
【故选 a。】
没错,就是如此简单。
只需要搞清楚了直线与圆的位置关系,这题其实跟送分也没啥区别。
且上边这只是解法一,稍微复杂一点,除此之外还有解法二,可用极大极小值的方法,直接将取值范围给算出来。
而那种方法,运算更加简单。
所以一分钟,真的是足够了。
如果不是林北想要控制一下自己速度,防止这一道美味佳肴被吃太快,而无法充分享受到的话,估计半分钟便足矣。
至于第三题就无需多说了。
曲线方程问题,对一般人来说那是难如登天,往往是云里雾里不知就里,即便能做,也要耗费不知多久时间。
可对林北来说,也就那样。
即便这道题有些许多复杂,可他也就耗费不到一分钟,便搞定了d选项。
就这样……
他一直保持着不到一分钟,大概四五十秒一道题的速度,而花了仅十分钟,便做完了12道选择题,而来到填空题。