“我发现两个问题,第一就是去根据形状去计算覆盖三角形的最大形状,这也不是一下子就能够算出来的。第二就是随着空隙的增加,去用三角形填空的过程也会变得极为繁琐复杂。”查尔斯·厄米特想要反驳的方式去测测亨利·庞加莱的能力,最重要的是要测一测亨利·庞加莱的耐力。
“如果不能够快速给出形状,就用随机的办法来化最大三角形,就没必要遍历的去比较哪个三角形面积是最大的了。而填空这种过程,就使用软件的算法,能不能用分布式的解决来计算了。”亨利·庞加莱认为这种办法也是可取的,没必要非得去找最大三角形,只要随机快速的找到足够大就可以,这样的计算过程就会加快,而且这样的下面的计算过程也会因此而加快。
查尔斯·厄米特心里在想,那这种构造的序列就是,先知道这个曲面,然后随机画上三角形填满,并记录三角形信息,之后随机的没填一个三角形,就记录一个三角形的信息,知道剩下的空隙在误差范围内就可以。
“即使用了这个办法,寻找空隙的算法,还是会很麻烦的。因为你不知道这里是不是覆盖过的。”查尔斯·厄米特还是疑惑的说。
“那就把每一个覆盖进行记录,然后遇到空隙后,计算空隙的中心坐标,中心坐标在覆盖好的三角形之外,就足够了。”亨利·庞加莱继续说:“你在序列里直接加上这个程序就可以了。”
“你说的随机给形状,还有判定空隙没有被三角形覆盖等等,这就是查尔斯·厄米特猜想里的模糊问题了。空隙没有被三角形覆盖,你的算法可能是错误的,万一有空隙很小,但质心在覆盖三角形中心处的凹形结构。即使你有其他算法了,但是也是很复杂的了。”查尔斯·厄米特就用这样的方式告诉大家,查尔斯·厄米特猜想的困难性。
亨利·庞加莱瞬间来了兴趣,他认为自己应该用基本的几何体去勾结一个复杂的三维形状。
亨利·庞加莱的脑子里开始用正四面体结构来堆放处一个形状的东西,并且试图让这个东西进行一个变换。
0维单形是一个点,一维单形是一条线段,二维单形是一个三角形,三维单形是一个四面体,n维单形是一个具有n+1个顶点的广义四面体。