最新网址:hbcjlp.com
莫尔斯考虑研究微分拓扑需要找到一个切入点。
这个切入点就是流形的表面,也就是这个流形的临界面,这个临界面虽然仅仅是表皮,但是依然能够反映出流形的内部信息,甚至是流形的全部信息。
莫尔斯理论(morsetheory)是微分拓扑学中利用微分流形上仅具非退化临界点的实值可微函数(称为莫尔斯函数)研究所给流形性质的分支。它是h.m.莫尔斯在20世纪30年代创立的。
莫尔斯理论是微分拓扑学中利用微分流形上仅具非退化临界点的实值可微函数(称为莫尔斯函数)研究所给流形性质的分支。它是h.m.莫尔斯在20世纪30年代创立的。由莫尔斯理论得知,微分流形与其上的光滑函数紧密相关,利用光滑函数不仅能研究微分流形的局部性质,而且某些光滑函数例如莫尔斯函数包含了刻划流形整体性质的丰富信息。莫尔斯理论主要分两部分,一是临界点理论,一是它在大范围变分问题上的应用。
莫尔斯理论是研究可微流形m上定义的可微实函数f的性质与流形m的拓扑与几何性质相互关系的数学分支。给定拓扑空间x与其上的连续实函数f,则称定义了变分问题(x,f).大范围变分法即是对于给出的变分问题(x,f),以函数f的性质与空间x的性质之间的关系作为研究对象的数学分支。在应用上重要的变分问题有:
1.与可微函数f有关的问题;
2.与由道路构成的空间Ω上的能量函数e有关的问题。
章节错误,点此举报(免注册),举报后维护人员会在两分钟内校正章节内容,请耐心等待,并刷新页面。