最新网址:hbcjlp.com
第一陈类等于零的二维复流形是有名的k3曲面,托尔罗夫(todorov)用calabi-yau定理证明了其周期映射是满射,萧荫堂利用calabi-yau度量证明了所有的k3曲面都是卡勒曲面。
而高维数的第一陈类为零的复流形的基本结构定理也随之而来。
这些都是复几何与代数几何中著名的猜想,在卡拉比猜想证明之前,人们毫无办法,望而却步。
最令人惊奇的是上世纪80年代初,超弦学家们认识到第一陈类等于零的三维复流形,恰好是他们的大统一理论所需要的十维时空中的一个六维空间,这神秘的六维空间,在我们看不到的尺度里主宰着我们大千世界的千变万化。
这个发现引发了物理学的一场革命。
章节错误,点此举报(免注册),举报后维护人员会在两分钟内校正章节内容,请耐心等待,并刷新页面。