聚书轩hbcjlp.com

繁体版 简体版
聚书轩 > 玄幻小说 > 数学心 > 第五百六十一章 朗兰兹纲领

第五百六十一章 朗兰兹纲领(2 / 2)

 推荐阅读: 穿越仙界之门 美漫:开局调查神盾局长税务问题 畅游诸天影视 明末之天降神兵 农门锦鲤妻的娇宠日常 网游之超神驯兽师 重生动画大时代 这个忍界不正常 克死前夫后我成了心软的神 兽语小村医
最新网址:hbcjlp.com

其中,迹公式是研究朗兰兹纲领的一个重要工具。可见,研究朗兰兹纲领的团队需要数论、代数群、李群表示论和代数几何专长的研究人员。

如今,研究朗兰兹纲领的数学家正试图证明这种关系以及其他许多相关的猜想。与此同时,他们正在用朗兰兹型的联系来解决那些本看似遥不可及的问题。其中最著名的成果是数学家安德鲁.怀尔斯在20世纪90年代初对费马大定理的证明。怀尔斯的证明部分取决于朗兰兹早在几十年前就预言过的数论和分析之间的关系。

另外,越南数学家吴宝珠试图用公式表述一项有关基本引理的精巧证法,终于在2009年证明。吴宝珠说:「我只是证明了纲领的基本引理,不是整个纲领。我们的下一个目标是整个朗兰兹纲领,基本引理只是它的基础,是其中一座小山峰。爬过这座山峰后,现在可以瞭望朗兰兹纲领了。前面是一座大山,我们的问题是如何爬上去。其中一件事是朗兰兹回来了,他将为我们指示解决整个纲领的新路线。我认为,整个纲领也许需要我一生的时间。」

事实上,朗兰兹纲领是数学中一系列影响深远的构想,联系数论、代数几何与约化群表示理论。这些年来,朗兰兹纲领已取得巨大的扩展。然而,当抛开那些为了实现朗兰兹的构想而建立的复杂系统时,会发现激励这个庞大构想最初动力的仍是最基本的数学问题。理解方程中出现质数的性质,基本上就等同于对算术世界的基本分类。

自从1990年以来,有3位数学家的工作因为部分解决了朗兰兹纲领中的猜想,从而获得了菲尔兹奖,这足以看出朗兰兹纲领的重要性:

第一位乌克兰数学家弗拉基米尔德林费尔德(vladimirdrinfeld)。由于他在朗兰兹纲领和量子群这两个领域取得了决定性的突破并促进了一大批研究的进展,他于1990年获得菲尔兹奖。

第二位洛朗拉佛阁(laurentlafforgue)。他证明了与函数体情形相应的整体朗兰兹纲领,于2002年获得了菲尔兹奖。拉佛阁所证明的相应的整体朗兰兹纲领,对更抽象的所谓函数体而非通常的数体情形提供了这样一种完全的理解。

第三位吴宝珠。『通过引入新的代数-几何学方法,吴宝珠证明了朗兰兹纲领自守形式中的基本引理』,

代数、几何、数论、分析与量子物理等领域的研究内容乍一看似乎相去甚远,但是朗兰兹纲领却在这些不同的数学分支之间建立起千丝万缕的联系。如果我们把这些分支看成数学这个秘密世界中的一块块大陆,朗兰兹纲领就是功能强大的运输工具,可以让我们在各个大陆之间瞬时往返。

在数学中,被称为『纲领』的成果屈指可数,出名的仅有爱尔兰根(erlanger)纲领、希尔伯特(hilbert)纲领和朗兰兹纲领这三个。

朗兰兹纲领指出这三个相对独立发展起来的数学分支:数论、代数几何和群表示论,实际上是密切相关的,而连接这些数学分支的纽带是一些特别的函数,被称为l-函数。

l-函数可以说是朗兰兹纲领的中心研究对象。数学界著名的七个『千禧年大奖问题』中有两个就是关于l-函数的,分别是黎曼(riemann)假设和bsd猜想。

朗兰兹提出了怎样对一般的简约群的自守表示定义一些l-函数,并猜测一般线性群自守表示的一些l-函数跟来自数论的伽罗瓦群的一些表示的l-函数是一样的。这个猜想被朗兰兹本人和其他数学家进一步拓展、细化,逐渐形成了一系列揭示数论、代数几何、表示论等学科之间深刻联系的猜想。

特别地,拉佛阁所证明的相应的整体朗兰兹纲领,对更抽象的所谓函数体而非通常的数体情形提供了这样一种完全的理解。我们可以将函数体设想为由多项式的商组成的集合,对这些多项式商可以像有理数那样进行加、减、乘、除。拉佛阁对于任意给定的函数体建立了其伽罗瓦群表示和与该体相伴的自守型之间的精确联系。拉佛阁的研究是以1990年菲尔兹奖获得者弗拉基米尔德林费尔德的工作为基础,后者在20世纪70年代证明了相应的朗兰兹纲领的特殊情形。拉佛阁首先认识到德林费尔德的工作可以被推广而为函数体情形的相应的朗兰兹纲领提供一幅完整的图像。在这一工作的过程中,拉佛阁还发现了一种将来可能被证明是十分重要的新的几何构造,所有这些发展的影响正在波及整个数学。

朗兰兹纲领是对现在数学诸多领域一种统一性的看法和普遍性的观点,由一系列规模宏大的猜想所组成,其中有些猜想甚至还没有形成明确的数学语言。朗兰兹纲领还有很多的各种各样的推广,比如说几何朗兰兹纲领可能和物理关系更密切一点,还有p‘-adic的朗兰兹纲领和数论的关系更加密切一点这里还有很多的问题等等大家去探索。朗兰兹纲领是数学中一系列影响深刻的构想,联系了数论、代数几何以及群表示理论。依靠朗兰兹纲领,数学家在一个领域不能解决的问题,可以在其他领域证明解决。而如果在另一个领域内仍然难以找到答案,那么可以把问题再转换到下一个数学领域中,直到它被解决为止。所以,朗兰兹纲领是21世纪最大的数学难题,也是未来最有潜力的研究领域!

章节错误,点此举报(免注册),举报后维护人员会在两分钟内校正章节内容,请耐心等待,并刷新页面。
『加入书签,方便阅读』