请听题:如何将苹果平均一分为二,还能保证它长时间的新鲜?
这是一个严肃的科学问题,已经困扰了人类数学家25年之久。
根据常识,就是要保证果肉暴露在外面的面积最小,也就是切片的面积最小。
如果跨越到更高的维度,是否依然成立?
这就是1995年,由三位数学家提出的一个几何学猜想。
1984年,著名数学家让·布尔甘提出了一个猜想。
一个任意维度的凸体,用低一维的平面去平分,那么存在一个常数c,让凸体至少存在一个切面的面积大于c。
换句话说,如果你一刀平分“任意维度空间的西瓜”,随便你怎么劈,总有一个切面总大于c。
在3维空间中,这个结论似乎很好理解,因为无论西瓜长成什么奇形怪状,总不可能在每个角度都细长。像长形的西瓜,竖直切下去,切面很小,可以你也可以水平切开平分它,这样切面就会很大。
但在3维世界中正确的事情,到了高维空间却不一定成立。这个问题后来被布尔甘自己证明,但数学家们并不满足于用平面切西瓜,而是希望能找到一个更小的切面,它可以是曲面。而这恰好是1995年kannan、lovász和simonovits三人提出的kls猜想关心的问题:用来平分的最小曲面面积是多少?
以二维空间里的一个三角形为例。这个最小的“曲面”是一段圆弧。用圆弧来平分一个三角形,中间的线长度最短,而最佳“平面”——直线——的效果略差。
如何用最小“切面”平分三角形。
到了更高维度的空间中,二等分的最佳平面和最佳曲面差距会变大吗?切面的面积是否和维度d有关?
这个问题已经不再是纯粹的数学问题。普林斯顿大学数学系教授assafnaor表示,kls猜想在纯粹的数学和理论计算机科学中都很重要。kls猜想的结果,直接关系到随机行走算法的运行时间,如机器学习模型中采样问题。·所以最后解决这个几何问题的学者,都并非几何学的专家,而是来自计算机界。
用统计方法解决问题
经过数学家的抽象,kls猜想就像一个封装着气体的容器,找到最佳切面就是寻找容器的“瓶颈”。
想象一个哑铃形状的容器,里面有一个气体分子在随机运动,哑铃中间连接部分越细,分子就越难跑到另一侧