1、改卷标准差大小说明什么 代表这些数值较接近平均值。一般来说标准差较小为好,这样代表比较稳定。 标准差越大说明大部分数值和其平均值之间差异较大,一个较小的标准差,代表这些数值较接近平均值。标准差也被称为标准偏差,或者实验标准差。简单来说,标准差是一组数据平均值分散程度的一种度量。当数据分布比较分散(即数据在平均数附近波动较大)时,各个数据与平均数的差的平方和较大,方差就较大;当数据分布比较集中时,各个数据与平均数的差的平方和较小。因此方差越大,数据的波动越大;方差越小,数据的波动就越小。 样本中各数据与样本平均数的差的平方和的平均数叫做样本方差;样本方差的算术平方根叫做样本标准差。样本方差和样本标准差都是衡量一个样本波动大小的量,样本方差或样本标准差越大,样本数据的波动就越大。 2、标准差反应了什么 问题一:标准差表示什么?标准差也称均方差,它表示各数据偏离平均数的距离(离均差)的平均数,它是离差平方和平均后的方根。用σ表示。因此,标准差也是一种平均数。 标准差是方差的算术平方根。 标准差能反映一个数据集的离散程度。平均数相同的,标准差未必相同。 问题二:标准差和方差反映数据的什么特征反映的是一组数据的集中与离散程度、波动与稳定状况,一般的标准差和方差越小说明数据越集中、越稳定,反之越础散。当然还要是具体情况而定 问题三:标准差算出来有什么作用吗标准差是反应多组数据之间稳定值差异的,与样本多少没有关系,有多少样本就反应多少样本之间的数值的稳定性。 所以,只是反应稳定性而已。 下一个数字不是9.3加减3.26的仿键范畴 而是说 标准差越大数组偏差越不稳定,例如你的物理实验结果的标准差太大,超出实验结果允许的误差范围,那么说明你的实验失败了。 理论上,合适合理的样本数是减小标准差的方法,但是标准差的大小没有物理意义,因为他是用来评价一组数据的稳定性的辅助数据。 不是样本越多标准差越小的,而是越能反映稳定性的真实效果,但是样本太少,会导致标准差失真。 在标准差的应用上还有双重标准差。就是计算标准差的标准差。双重标准差无限趋近于0的时候,就是你的最真实标准差。 五个一般不够的,最简单的实验也基本在10个左右。 应用上主要用在风险资产评估:金融风险评估,各种实验等 最后举个最简单例子:A、B两组各有6位学生参加同一次语文测验,A组的分数为95、85、75、65、55、45,B组的分数为73、72、71、69、68、67。这两组的平均数都是70,但A组的标准差为17.078分,B组的标准差为2.16分,说明A组学生之间的差距要比B组学生之间的差距大得多。 问题四:平均差和标准差有什么区别?哪一个更能反映离散程度?平均差是反应各标志值与算术平均数之间的平均差异,是各个数据与平均值差值的绝对值的平均数;标准差是离均差平方和平均后的方根,更能反映一个数据集的离散程度。 一般统计使用标准差更为广泛,尤其是样本量足够大的情况下,它更能反映数据的离散程度 问题五:方差标准差的意义是什么?它们有何特性1、方差的意义在于反映了一组数据与其平均值的偏离程度; 2、方差是衡量随机变量或一组数据时离散程度的度量。概率论中方差用来度量随机变量和其数学期望(即均值)之间的偏离程度。统计中的方差(样本方差)是各个数据分别与其平均数之差的平方的和的平均数。 3、方差的特性备羡巧在于:方派拆差是和中心偏离的程度,用来衡量一批数据的波动大小(即这批数据偏离平均数的大小)并把它叫做这组数据的方差。在样本容量相同的情况下,方差越大,说明数据的波动越大,越不稳定。 4、标准差是方差的算术平方根,意义在于反映一个数据集的离散程度。 问题六:标准差和方差反映数据的什么特征?10分标准差反应数据的变化幅度,即上下左右波揣的剧烈程度。在统计中可以用来计算某变量值的区间范围(即置信区间)。 方差:即标准差的平方。 所以,标准差和方差两者没有本质区别。 但是标准差和标准差系数(反应数据发生变化的可能性,即这种变化是否会经常发生。)区别很大。 问题七:标准差和方差反映数据的什么特征标准差和方差反映数据的分散特征: 标准差和方差的数值越大,那么数据的分散程度越大。 3、标准差大说明什么 问题一:标准差的数值的大小代表什么意义?标准差大好还是小好?标准差也被称为标准恭差,或者实验标准差。简单来说,标准差是一组数据平均值分散程度的一种度量。 一个较大的标准差,代表大部分数值和其平均值之间差异较大;一个较小的标准差,代表这些数值较接近平均值。一般来说标准差较小为好,这样代表比较稳定。 问题二:标准差的大小可以说明均数代表性的好坏标准差和标准误都是描述变异的指标,当样本数量一定时,标准差越大,标准误也越大。但是它们所表达的含义是不同的:标准差是描述个体观察值变异程度的大小。标准差越小,均数对一组观察值的代表性越好;标准误是描述样本均数变异程度及抽样误差的大小。标准误越小,用样本均数推断总体的可靠性越大。在应用中,一般来说:标准差与均数结合,用于描述观察值的分布范围,如医学参考值范围的估计;标准误与均数结合,用于估计总体均数可能出现的范围,如参数估计的置信区间。 问题三:标准差越大是什么意思标准差也被称为标准偏差,或者实验标准差,公式如下所示:标准差=方差的算术平方根=s=sqrt(((x1-x)^2+(x2-x)^2+......(xn-x)^2)/n)。 简单来说,标准差是一组数值自平均值分散开来的程度的一种测量观念。一个较大的标准差,代表大部分的数值和其平均值之间差异较大;一个较小的标准差,代表这些数值较接近平均值。 例如,两组数的***{0,5,9,14}和{5,6,8,9}其平均值都是7,但第二个***具有较小的标准差。 标准差可以当作不确定性的一种测量。例如在物理科学中,做重复性测量时,测量数值***的标准差代表这些测量的精确度。当要决定测量值是否符合预测值,测量值的标准差占有决定性重要角色:如果测量平均值与预测值相差太远(同时与标准差数值做比较),则认为测量值与预测值互相矛盾。这很容易理解,因为如果测量值都落在一定数值范围之外,可以合理推论预测值是否正确。 标准差应用于投资上,可作为量度回报稳定性的指标。标准差数值越大,代表回报远离过去平均数值,回报较不稳定故风险越高。相反,标准差数值越小,代表回报较为稳定,风险亦较小。 例如,A、B两组各有6位学生参加同一次语文测验,A组的分数为95、85、75、65、55、45,B组的分数为73、72、71、69、68、67。这两组的平均数都是70,但A组的标准差为17.078分,B组的标准差为2.160分(此数据时在R统计软件中运行获得),说明A组学生之间的差距要比B组学生之间的差距大得多。 如是总体,标准差公式根号内除以 如是样本,标准差公式根号内除以(n-1)。 因为我们大量接触的是样本,所以普遍使用根号内除以(n-1)。 公式意义 所有数减去平均值,它的平方和除以数的个数(或个数减一),再把档猜困所得值开根号,就是1/2次方,得到的数就是这组数的标准差。 问题四:标准差的数值的大小代表什么意义标准差也被称为标准偏差,或者实验标准差.简单来说,标准差是一组数据平均值分散程度的一种度量 一个较大的标准差,代表大部分数值和其平均值之间差异较大;一个较小的标准差,代表这些数值较接近平均值.一般来说标准差较小为好,这样代表比较稳定 问题五:标准差是什么意思?标准差,在概率统计中最常使用作为统计分布程度上的测量。标准差定义是总体各单位标准值与其平均数离差平方的算术平均数的平方根。它反映组内个体间的离散程度。 标准差是一种表示分散程度的统计观念。标准差已广泛运用在股票以及共同基金投资风险的衡量行念上,主要是根据基金净值于一段时间内波动的情况计算而来的。一般而言,标准差愈大,表示净值的涨跌较剧烈,风险程度也较大。 实务的运作上,可进一步运用单位风险报酬率的概念,同时将报酬率的风险因素考虑在内。所谓单位风险报酬率是指衡量投资人每承担一单位的风险,所兆和能得到的报酬,以夏普指数最常为投资人运用。 标准差是一组数值自平均值分散开来的程度的一种测量观念。一个较大的标准差,代表大部分的数值和其平均值之间差异较大;一个较小的标准差,代表这些数值较接近平均值。 问题六:标准差算出来有什么作用吗标准差是反应多组数据之间稳定值差异的,与样本多少没有关系,有多少样本就反应多少样本之间的数值的稳定性。 所以,只是反应稳定性而已。 下一个数字不是9.3加减3.26的范畴 而是说 标准差越大数组偏差越不稳定,例如你的物理实验结果的标准差太大,超出实验结果允许的误差范围,那么说明你的实验失败了。 理论上,合适合理的样本数是减小标准差的方法,但是标准差的大小没有物理意义,因为他是用来评价一组数据的稳定性的辅助数据。 不是样本越多标准差越小的,而是越能反映稳定性的真实效果,但是样本太少,会导致标准差失真。 在标准差的应用上还有双重标准差。就是计算标准差的标准差。双重标准差无限趋近于0的时候,就是你的最真实标准差。 五个一般不够的,最简单的实验也基本在10个左右。 应用上主要用在风险资产评估:金融风险评估,各种实验等 最后举个最简单例子:A、B两组各有6位学生参加同一次语文测验,A组的分数为95、85、75、65、55、45,B组的分数为73、72、71、69、68、67。这两组的平均数都是70,但A组的标准差为17.078分,B组的标准差为2.16分,说明A组学生之间的差距要比B组学生之间的差距大得多。 问题七:统计学中的标准差有什么意义?方差方差和标准差: 样本中各数据与样本平均数的差的平方和的平均数叫做样本方差; 样本方差的算术平方根叫做样本标准差。 样本方差和样本标准差都是衡量一个样本波动大小的量,样本方差或样本标准差越大,样本数据的波动就越大。 数学上一般用E{[X-E(X)]^2}来度量随机变量X与其均值E(X)的偏离程度,称为X的方差。 定义 设X是一个随机变量,若E{[X-E(X)]^2}存在,则称E{[X-E(X)]厂2}为X的方差,记为D(X)或DX。即D(X)=E{[X-E(X)]^2},而σ(X)=D(X)^0.5(与X有相同的量纲)称为标准差或均方差。 由方差的定义可以得到以下常用计算公式: 方差的几个重要性质(设一下各个方差均存在)。 (1)设c是常数,则D(c)=0。 (2)设X是随机变量,c是常数,则有D(cX)=c^2D(X)。 (3)设X,Y是两个相互独立的随机变量,则D(X+Y)=D(X)+D(Y)。 (4)D(X)=0的充分必要条件是X以概率为1取常数值c,即P{X=c}=1,其中E(X)=c。 标准差标准差 各数据偏离平均数的距离(离均差)的平均数,它是离差平方和平均后的方根。用σ表示。因此,标准差也是一种平均数 标准差能反映一个数据集的离散程度。平均数相同的,标准差未必相同。 例如,A、B两组各有6位学生参加同一次语文测验,A组的分数为95、85、75、65、55、45,B组的分数为73、72、71、69、68、67。这两组的平均数都是70,但A组的标准差为17.08分,B组的标准差为2.16分,说明A组学生之间的差距要比B组学生之间的差距大得多。 问题八:标准差是什么?标准差是方差的算术平方根。标准差能反映一个数据集的离散程度。平均数相同的,标准差未必相同。例如,A、B两组各有6位学生参加同一次语文测验,A组的分数为95、85、75、65、55、45,B组的分数为73、72、71、69、68、67。这两组的平均数都是70,但A组的标准差为17.08分,B组的标准差为2.16分,说明A组学生之间的差距要比B组学生之间的差距大得多。标准差也被称为标准偏差,或者实验标准差。关于这个函数在EXCEL中的STDEVP函数有详细描述,EXCEL中文版里面就是用的“标准偏差”字样。但我国的中文教材等通常还是使用的是“标准差”。在EXCEL中STDEVP函数就是下面评论所说的另外一种标准差,也就是总体标准差。在繁体中文的一些地方可能叫做“母体标准差”因为有两个定义,用在不同的场合:如是总体,标准差公式根号内除以n,如是样本,标准差公式根号内除以(n-1),因为我们大量接触的是样本,所以普遍使用根号内除以(n-1),外汇术语:标准差指统计上用于衡量一组数值中某一数值与其平均值差异程度的指标。标准差被用来评估价格可能的变化或波动程度。标准差越大,价格波动的范围就越广,股票等金融工具表现的波动就越大。阐述及应用简单来说,标准差是一组数值自平均值分散开来的程度的一种测量观念。一个较大的标准差,代表大部分的数值和其平均值之间差异较大;一个较小的标准差,代表这些数值较接近平均值。例如,两组数的***{0,5,9,14}和{5,6,8,9}其平均值都是7,但第二个***具有较小的标准差。标准差可以当作不确定性的一种测量。例如在物理科学中,做重复性测量时,测量数值***的标准差代表这些测量的精确度。当要决定测量值是否符合预测值,测量值的标准差占有决定性重要角色:如果测量平均值与预测值相差太远(同时与标准差数值做比较),则认为测量值与预测值互相矛盾。这很容易理解,因为如果测量值都落在一定数值范围之外,可以合理推论预测值是否正确。标准差应用於投资上,可作为量度回报稳定性的指标。标准差数值越大,代表回报远离过去平均数值,回报较不稳定故风险越高。相反,标准差数值越细,代表回报较为稳定,风险亦较小。样本标准差在真实世界中,除非在某些特殊情况下,找到一个总体的真实的标准差是不现实的。大多数情况下,总体标准差是通过随机抽取一定量的样本并计算样本标准差估计的。 问题九:统计学中的标准差有什么意义样本方差的算术平方根叫做样本标准差。 样本方差和样本标准差都是衡量一个样本波动大小的量,样本方差或样本标准差越大,样本数据的波动就越大。 数学上一般用E{[X-E(X)]^2}来度量随机变量X与其均值E(X)的偏离程度,称为X的方差。 定义 设X是一个随机变量,若E{[X-E(X)]^2}存在,则称E{[X-E(X)]^2}为X的方差,记为D(X)或DX。即D(X)=E{[X-E(X)]^2},而σ(X)=D(X)^0.5(与X有相同的量纲)称为标准差或均方差。 由方差的定义可以得到以下常用计算公式: 方差的几个重要性质(设一下各个方差均存在)。 (1)设c是常数,则D(c)=0。 (2)设X是随机变量,c是常数,则有D(cX)=c^2D(X)。 (3)设X,Y是两个相互独立的随机变量,则D(X+Y)=D(X)+D(Y)。 (4)D(X)=0的充分必要条件是X以概率为1取常数值c,即P{X=c}=1,其中E(X)=c。 标准差标准差 各数据偏离平均数的距离(离均差)的平均数,它是离差平方和平均后的方根。用σ表示。因此,标准差也是一种平均数 标准差能反映一个数据集的离散程度。平均数相同的,标准差未必相同。 问题十:标准差的大小不会超过极差这句话对吗标准差的大小不会超过极差 这句话是对的。 极差是最大值与最小值的差, 是所有衡量数据的离散程度的量中最大的。 4、标准差比平均数大说明什么?能不能说明数据不好 标准差比平均数大说明什么?标准差比平均数大,说明这数据离磨哗散性很大.肯定说明这数据变化范围太大了.这标准差比平均乱尺数还哗游高大,要算这变异系数都大于100%了.一般看数据变化大小是看这变异系数.变异系数越大,说明这数据很离 5、标准差系数是什么意思 标准差系数,又称为离散系数。在财务管理中,称为变化系数,指的是标准差/均值。它是从相对角度观察的差异和离散程度,在比较相关事物的差异程度时较之直接比较标准差要好些。 标准差是离均差平方和平均后的方根,用σ表示。标准差是方差的算术平方根。标准差能反映一个数据集的离散程度。平均数相同的,标准差未必相同。 标准差系数是将标准差与相应的平均数对比的结果。标准差和其他变异指标一样,是反映标志变动度得绝对指标。它的大小,不仅取决于标准值的离差程度,还决定于数列平均水平的高低。 因而对于具有不同水平的数列或总体,就不宜直接用标准差来比较其标志变动度的大小,而需要将标准差与其相应的平均数对比,计算标准差系数,即采用相对数才能进行比较。 (5)标准差系数的大小说明了什么扩展资料: 标准差是一组数据平均值分散程度的一种度量。一个较大的标准差,代表大部分数值和其平均值之间差异较大;一个较小的标准差,代表这些数值较接近平均值。橘衫旁 例如,两组数的集合{0,5,9,14}和{5,6,8,9}其平均值都是7,但第二个集合具有较小的标准差。 标准差应用于投资上,可作为量度回报稳定性的指标。标准差数值越大,代表回报远离过去平均数值,回报较不稳定故风险越高。相反,标准差数值越小,代表回报较为稳定,风险亦较小。 由于方差是数据圆橡的平方,与检测值本身相差太大,人们难以直观的衡量,所以常用方差开根号换算回来这就是我们要说的标准差。 在统计学中样本的均差多是除以自由度(n-1),它是意思是样本能自由选择的程度。当选到只剩一个时,它不可能再有塌陪自由了,所以自由度是n-1。 6、标准差系数大小说明什么 标准差是一组数据平均值分散程度的一种度量。一个较大的标准差,代表大部分数值和其平均值之间差异较大;一个较小的标准差,代表这些数值较接近平均值。 标准差小说明数据更加准确。 性质: 为非负数值,与测量资料具有相同单位。一个总量的标准差或一个随机变量的标准差,及一个子集合样品数的标准差之间,有所差别。 由于方差是数据的平方,与检测值本身相差太大,人们难以直观的衡量,所以常用方差开根号换算回来这就是我们要说的标准差。 在统计学中样本的均差多是除以自由度(n-1),它是意思是样本能自由选择的程度。当选到只剩一个时,它不可能再有自由了,所以自由度是n-1。 7、标准差系数是标准差与平均值的比值,标准差系数越大,则表明其平均值的代表性越强.为什么是错误的 标准差系数是标准差与平均值的比值越大说明不是标准差越大就是平均值越小 标准差越大说明数据离散度很大平均值就代表性就弱了 平均值越小如果一组数据全部都缩小一半那么均值也缩小一半而标准差也缩小一半是同步的说明在均值很小的情况下还有比较大的标准差也说明数据离散度大 总之就是错的 8、标准差大小说明什么? 方差大小意味着:每一个变量(观察值)与总体均数之间的差异。为避免出现离均差总和为零,离均差平方和受样本含量的影响,统计学采用平均离均差平方和来描述变量的变异程度。 方差是在概率论和统计方差衡量随机变量或一组数据时离散程度的度量。概率论中方差用来度量随机变量和其数学期望(即均值)之间的偏离程度。统计中的方差(样本方差)是每个样本值与全体样本值的平均数之差的平方值的平均数。在许多实际问题中,研究方差即偏离程度有着重要意义。 统计学意义 当数据分布比较分散(即数据在平均数附近波动较大)时,各个数据与平均数的差的平方和较大,方差就较大;当数据分布比较集中时,各个数据与平均数的差的平方和较小。因此方差越大,数据的波动越大;方差越小,数据的波动就越小。 样本中各数据与样本平均数的差的平方和的平均数叫做样本方差;样本方差的算术平方根叫做样本标准差。样本方差和样本标准差都是衡量一个样本波动大小的量,样本方差或样本标准差越大,样本数据的波动就越大。 9、标准差系数有什么意义 当两组数据的平均值比较接近时用标准差的大小就可以评价扒销两组数据的分散程度; 两组数据的平均值相差较大时,再用标准差的大小就不好评价两组数据的分散程度了 此时可以应伍此氏用标准差系数:即标准差/平均值,也称为变异系数来腔散评价分散程度就排除了 平均值的影响了.此外量纲不同的二组数据分散度比较用它更好 变异系数V=σ 10、标准差的数值的大小代表什么意义? 标准差也被称为标准偏差,或者实验标准差。简单来说,标准差是一组数据平均值分散程度的一种度量。一个较大的标准差,代表大部分数值和其平均值之间差异较大;一个较小的标准差,代表这些数值较接近平均值。一般来说标准差较小为好,这样代表比较稳定。 (10)标准差系数的大小说明了什么扩展资料: 标准差是在概率统计中最常使用作为统计分布程度上的测量。标准差定义为方差的算术平方根,反映组内个体间的离散程度。测量到分布程度的结果,原则上具有两种性质:一个总量的标准差或一个随机变量的标准差,及一个子集合样品数的标准差之间,有所差别。 标准差也称均方差,是各数据偏离平均数的距离的平均数,它是离均差平方和平均后的方根,用σ表示。标准差是方差的算术平方根。标准差能反映一个数据集的离散程度。平均数相同的,标准差未必相同。标准差可以反映平均数不能反映出的东西(比如稳定度等)。 标准差可以当作不确定性的一种测量。例如在物理科学中,做重复性测量时,测量数值集合的标准差代表这些测量的精确度。 当要决定测量值是否符合预测值,测量值的标准差占有决定性重要角色:如果测量平均值与预测值相差太远(同时与标准差数值做比较),则认为测量值与预测值互相矛盾。这很容易理解,因为如果测量值都落在一定数值范围之外,可以合理推论预测值是否正确。