木卫三内部不同层次的厚度取决于硅酸盐的构成成分以及内核中硫元素的数量。最可能的情况是其内核半径达到700-900千米,外层冰质地涵厚度达800-1000千米,其余部分则为硅酸盐质地涵。
内核的密度达到了5.5–6gcm3,硅酸盐质地涵的密度为3.4–3.6gcm3。与地球内核结构类似,某些产生磁场的模型要求在铁-硫化亚铁液态内核之中还存在着一个纯铁构成的固态内核。若是这种类型的内核,则其半径最大可能为500千米。木卫三内核的温度可能高达1500-1700K,压力高达100千巴(100亿帕)。
木卫三据探测含有太阳系最多的液态水。哈勃望远镜通过分析木卫三的极光光谱,估算出其海洋深达400千米。还有科学家怀疑,这可能只是木卫三海洋的一小部分,木卫三可能拥有三个海洋,三个海洋层层叠加,每层都有400千米的深度,并由高压冰层分隔开,最下面的一层海洋可能直接接触到木卫三的岩石内核。所以木卫三的海洋深度可能超过1000公里,蕴含着超过150亿立方千米的巨大水体,含水量是地球水量的30倍以上。
木卫三的表面主要存在两种类型的地形:一种是非常古老的、密布撞击坑的暗区,另一种是较之前者稍微年轻(但是地质年龄依旧十分古老)、遍布大量槽沟和山脊的明区。暗区的面积约占球体总面积的三分之一,其间含有粘土和有机物质,这可能是由撞击木卫三的陨石带来的。
而产生槽沟地形的加热机制则仍然是行星科学中的一大难题。现今的观点认为槽沟地形从本质上说主要是由构造活动形成的;而如果冰火山在其中起了作用的话那也只是次要的作用。
为了引起这种构造活动,木卫三的岩石圈必须被施加足够强大的压力,而造成这种压力的力量可能与过去曾经发生的潮汐热作用有关——这种作用可能在木卫三处于不稳定的轨道共振状态时发生引力潮汐对冰体的挠曲作用会加热星体内部,给岩石圈施加压力,并进一步导致裂缝、地垒和地堑的形成,这些地形取代了占木卫三表面积70%的古老暗区。
槽沟地形的形成可能还与早期内核的形成过程及其后星体内部的潮汐热作用有关,它们引起的冰体的相变和热胀冷缩作用可能导致木卫三发生了微度膨胀,幅度为1-6%。随着星体的进一步发育,热水喷流被从内核挤压至星体表面,导致岩石圈的构造变形。
星体内部的放射性衰变产生的热能是最可能的热源,木卫三地下海洋的形成可能就有赖于它。通过研究模型人们发现,如果过去木卫三的轨道离心率值较现今高很多,那么潮汐热能就可能取放射性衰变热源而代之,成为木卫三最主要的热源。