最新网址:hbcjlp.com
柯西说:“我好好跟你说说,这不仅仅是个不等式,它其实在数学的多个领域都有极大的作用。”
拉普拉斯说:“它能让你发现更多个不等式?”
柯西说:“不是的,是这个不等式可以反应出很多问题。可以推广成更多的卡尔松不等式。还可以推广成向量形式,三角形式,概率论形式,积分形式,一般形式。后来则推广成复变函数。所以一个简单的不等式,也会有很多数学的其他作用,甚至会远远超出自己的想象。”
拉普拉斯也渐渐的理解了柯西的海量论文的原因。
柯西-施瓦茨不等式是一个在众多背景下都有应用的不等式,例如线性代数,数学分析,概率论,向量代数以及其他许多领域。它被认为是数学中最重要的不等式之一。此不等式最初于1821年被柯西提出,其积分形式在1859被布尼亚克夫斯基提出,而积分形式的现代证明则由施瓦兹于1888年给出。
章节错误,点此举报(免注册),举报后维护人员会在两分钟内校正章节内容,请耐心等待,并刷新页面。