最新网址:hbcjlp.com
这些结果很快激发出了atiyah-singer指标定理。
阿蒂亚看到博特的同伦群周期性定理后,开始准备准备以此作为工具来研究拓扑学。
阿蒂亚深知数形结合对于数学的影响是极其深远的,而且会越来越深远。
阿蒂亚在想,普通的方程的解的个数,就是曲线与直线的焦点的个数。
而微分方程寻找解法的话,那解的样子应该是什么样子的?
刚好辛格也来凑热闹了,得知阿蒂亚的想法后,他在一杯咖啡下肚后说:“你已经知道普通曲线的解就是跟曲线交点数了。那是一种拓扑的结构,而研究微分方程的解法,很难,在图形里肯定也有一种结构,也是一种拓扑结构。”
阿蒂亚说:“没错,我们现在就需要搞清楚,微分方程的解会是什么样的拓扑图形结构。”
章节错误,点此举报(免注册),举报后维护人员会在两分钟内校正章节内容,请耐心等待,并刷新页面。